Низкая теплопроводность это хорошо или плохо

Содержание

Коэффициент теплопроводности – как утеплить дом и сэкономить

Низкая теплопроводность это хорошо или плохо

При постройке дома нужно учитывать его тепловую эффективность, чтобы в помещении было тепло или холодно.

Для этого существует коэффициент теплопроводности, который означает скорость прохождения энергии через материал.

Требуется знать, что влияет на КТП и как его определить, а также какие основные функции теплопроводности и для чего она нужна. Важно понимать, какие материалы имеют низкую или высокую КТП, если нужно что-то построить. 

Многослойные стены Источник www.ivd.ru

Что такое теплопроводность

В теории теплопроводность – это способность материала проводить энергию или тепло от более нагретых частей к менее тёплым, путём хаотического движения частиц тела.

На практике это минимизация тепловых потерь через строительные конструкции. У разных материалов своя теплопроводность.

Дерево менее податливо к таким действиям, а металл наоборот нагревается до такой степени¸ что его тяжело держать в руках.

Для характеристики проводника тепла придумали такую единицу, как коэффициент. Обозначают её греческой буквой λ и измеряют в Вт/(м*℃).

Иногда вместо градусов Цельсия в этой формуле указаны градусы Кельвина (К), но суть от этого не меняется. Этот коэффициент показывает способность передачи тепла материалом на определённое расстояние за единицу времени.

Но показатель характеризует само вещество, не привязываясь к размерам изделия. 

КТП некоторых материалов Источник pobetony.expert

При покупке стройматериала у продавца можно попросить паспорт на продукт и посмотреть коэффициент теплопроводности. Сырье, отличающееся высокой проводимостью тепла, используют в качестве радиаторов, так как их стенки будут передавать нагрев от теплоносителя.

Чем меньше коэффициент теплопроводности материала для стены здания, тем меньше оно будет терять тепла во время холодной погоды. И тем меньше можно делать толщину стены.

В справочниках чаще всего указывают несколько значений теплопроводности для материала (от трёх и больше).

Это происходит из-за того, что сам коэффициент меняется в зависимости от температуры и других факторов, например, влаги, при которой значение увеличивается. 

Вспененная древесина Источник inpromen.ru

На нашем сайте Вы можете ознакомиться с самыми популярными проектами одноэтажных домов размерами 7х8 – от строительных компаний, представленных на выставке домов «Малоэтажная Страна». 

Назначение теплопроводности

Так как теплопроводность – это показатель передачи тепловой энергии от нагреваемых предметов к предметам с более низкой температурой, то процесс происходит до тех пор, пока градусы не уравняются. При построении зданий желательно применять материалы с минимальным показателем теплопроводности. 

Для уменьшения нагрева помещения от солнечных лучей используются покрытия с отражающей поверхностью (оцинковка, зеркальные панели), а для увеличения применяются вещества, которые хорошо поглощают свет (битум, рубероид). 

Такое понятие, как коэффициент теплопроводности, обозначает количество проходящего тепла через 1 м толщины материала за 1 час. Его используют для расчёта характеристики теплоизоляционных материалов, которые потребуются для сбережения тепла внутри помещения, а также способности сырья быстро отводить или дольше сдерживать энергию внутри конструкции. 

Светоотражающий утеплитель Источник vystroim.com Материалы с высокой проводимостью используются в качестве основы для радиаторов и нагревательных труб. Для производства применяют алюминий, медь или сталь из-за их высокой плотности и хорошей передачи энергии. Для утепления используют сырье с низкой теплопроводностью и высокой пористостью. Например, войлок или стекловолокно способствуют улучшению энергетической эффективности. 

Как делается расчёт КТП и требуемых материалов, смотрите в видео:

На нашем сайте Вы можете найти контакты строительных компаний, которые специализируются на фасадных материалах. Напрямую пообщаться с представителями можно посетив выставку домов «Малоэтажная Страна».

Что влияет на теплопроводность

Из-за того, что в воздухе тепло передаётся только за счёт движущихся частиц, материалы, которые имеют пористую структуру, хуже отводят тепло. Передача энергии сильно зависит от количества, плотности, размера и формы пустых мест внутри сырья, из которого изготовлена конструкция (дом, печь или любая другая). 

Также на энергетическую эффективность влияют отражающие свойства материала. Если покрытие имеет зеркальную поверхность, то оно будет получать меньше тепла от солнечных лучей и ламповых обогревателей. 

Большую роль в передаче энергии по сырью играет влажность. Сырой воздух может увеличить скорость охлаждения, так как вода довольно сильно и быстро поглощает тепло, а влажные стены легче остывают. 

Стены с плотно подогнанным утеплителем Источник www.rikkosteel.ro

Также на теплопроводность материала влияет его слоистость и волокнистость. Например, пол, который покрыт торцовой деревянной шашкой проводит большее количество энергии, чем щитовой или дощатый паркет.

Это обусловлено тем, что у древесных изделий термическое сопротивление поперёк волокон в 2 раза выше, чем вдоль соединений. Таким особенностям подвергаются и искусственные материалы со слоистой структурой.

На теплопроводность влияет плотность соприкосновения одного материала к другому. Например, стена, к которой плотно прилегает железная поверхность будет остывать быстрее. Но это работает и в обратную сторону. Если между двумя деталями будет прослойка из воздуха или газа, то передача энергии уменьшится.

Это применяется при изготовлении окон из стекла или пластиковых аналогов. Также некоторые строители оставляют воздушную прослойку между двумя параллельными стенами или полом и фундаментом. 

Стены с воздушной прослойкой Источник проекты-домов-ростов.рф

Это может быть интересно! В статье по следующей ссылке читайте про технологию утепления пола с керамзитом.

Методы определения КТП

Существует 2 метода определения КТП:

  1. Стационарный – предполагает работу с параметрами, которые не будут изменяться в течение длительного времени или изменяющиеся незначительно. Преимущество этого метода в высокой точности вычисления результата. К недостаткам относится сложность регулировки эксперимента, большое количество используемых термопар, а также длительность затраченного времени на подготовку и проведение опыта. Этот метод подходит для вычисления КТП жидкостей и газов, если не учитывать передачу энергии конвекцией и излучением. 
  2. Нестационарный – визуально выглядит более простой и требует для выполнения от 10 до 30 минут. Нашла своё широкое применение из-за того, что в процессе исследования можно узнать не только КТП, но и температурную проводимость, а также теплоёмкость образца. 

Для проведения анализа теплопроводности строительных материалов применяются электронные приборы, например, ИТП-МГ4 «Зонд». Такие средства для вычисления КТП отличаются рабочим диапазоном температур, а также процентом погрешности. 

Как выполняется вычисление КТП с помощью электронного прибора, смотрите в видео:

Это может быть интересно! В статье по следующей ссылке читайте про то, как сделать мансардную крышу.

Таблица тепловой эффективности материалов

Большинство сырья, которое используется при строительстве, не нуждается в самостоятельном измерении КТП. Для этого существует таблица теплопроводности материалов, которая показывает основные характеристики, требуемые для расчёта тепловой эффективности. 

МатериалПлотность, кг/м3Теплопроводность, Вт/(м*градусы)ТеплоёмкостьДж/(кг*градусы)
Железобетон25001,7840
Бетон на гравии или щебне из природного камня24001,51840
Керамзитобетон лёгкий500-12001,19-0,45840
Кирпич строительный800-15000,24-0,3800
Силикатный кирпич1000-22000,51-1,29750-840
Железо787070-80450
Пенополистирол Пеноплэкс110-1400,042-0,051600
Плиты минераловатные150-2500,043-0,063

Большинство материалов отличается по своему составу. Например, теплопроводность кирпича зависит от того, из чего он сделан. Клинкерный имеет КТП от 0,8 до 1,6, а кремнезёмный 0,15. Также есть отличия по методу изготовления и стандартам ГОСТ. 

Пенополистирол разной толщины Источник cmp24.com.ua

Это может быть интересно! В статье по следующей ссылке читайте про деревянные перекрытия, какие они должны быть в домах с утеплением. 

Коротко о главном

Коэффициент теплопроводности – это скорость передачи тепла через материал в течение определённого времени.

Знание КТП нужно для улучшения тепловой эффективности конструкции. Например, если она должна быстро отдавать тепло, то её нужно делать из сырья с высокой передачей энергии, а для закрытых помещений наоборот нужны дополнительные утеплители. Это поможет сэкономить деньги на отоплении.

На теплопроводность материала влияет его плотность, влажность и волокнистость. 

Прочитать позже

Отправим материал на почту

Автор статьи

Технический эксперт строительной корпорации, блогер и влогер

Юрий Поляков

Источник: https://m-strana.ru/articles/koeffitsient-teploprovodnosti/

Обзор строительных материалов с различной теплопроводностью

Низкая теплопроводность это хорошо или плохо

Теплоизоляция необходима в любом помещении, где температура в какое-либо время года не должна быть равной температуре окружающей среды.

Оптимальная температура в помещении достигается с помощью работы обогревательных или охлаждающих устройств.

Чтобы искусственно настроенная температура внутри здания не изменялась из-за диффузии неодинаково нагретых частей внутри и снаружи здания, используют строительные материалы с наименьшим коэффициентом теплопроводности.

Что такое теплопроводность?

Теплопроводность — физическое свойство тела (тел) обменивать внутреннюю энергию с помощью диффузии атомов и молекул, которые хаотически перемещаются от более нагретых частей к более холодным.

Атомы и молекулы двигаются в хаотичном порядке до тех пор, пока температура по всему занимаемому объёму не выровняется.

Чем больше теплопроводность вещества, тем быстрее сквозь него передаётся более высокая или более низкая температура.

Теплопроводность определяется количеством теплоты в Дж, которая, при разнице температур в противоположно расположенных параллельных плоскостях в 1 К, проходит через 1 м² за 1 ч.

Коэффициент теплопроводности выражают в Вт/м*К.

Роль коэффициента теплопроводности при принятии архитектурно-строительного решения

Теплопроводность твёрдых тел, каковыми являются все строительные материалы, проявляется за счёт переноса тепла, происходящего в результате колебаний кристаллической решётки.

Большая теплопроводность строительного материала недопустима для возведения архитектурных сооружений. Чем больше теплопроводность, тем меньше теплоизоляционные качества материала, необходимые для поддержания в помещении температуры, отличной от температуры окружающей среды.

Строительные материалы с низкой теплопроводностью помогают сохранить достигнутый градус в помещении вне зависимости от погодных условий, благодаря минимальному поддержанию диффузии между разными по температуре частицами.

Чем меньше коэффициент теплопроводности материала, тем лучше его теплоизоляционные качества.

Хорошая теплоизоляция избавит от сквозняков, холодных стен, быстрого остывания, промерзания или нагрева помещения, позволит существенно сэкономить на устройствах обогрева или охлаждения.

Хотите узнать о конструкции ленточного фундамента?

Или почитайте ЗДЕСЬ об установке пластиковых окон своими руками.

Конструкционные материалы и их теплопроводность

Теплопроводность вещества зависит от его плотности. Чем больше плотность вещества, тем выше теплопроводность. С увеличением пористости понижается ее коэффициент.

Низкий коэффициент теплопроводности материала определяет его хорошие теплоизоляционные качества.

Бетон

  • Плотность: 500 кг/м³–2 500 кг/м³. Показатель зависит от состава смеси.
  • Теплопроводность: 1,28–1,51 Вт/м*К. Показатель меняется в зависимости от консистенции бетона.

Бетонная смесь используется для заливки монолитного фундамента, а бетонные блоки – для закладки фундамента и возведения стен.

Железобетон

  • Плотность: 2 500 кг/м3; бетонная смесь без вибрирования (применения глубинного вибратора) – 2 400 кг/м3.
  • Теплопроводность: 1,69 Вт/м*К.

Лёгкий бетон на пористых заполнителях называют ячеистым бетоном.

Используют в качестве конструкционного и теплоизоляционного материала. Самые распространённые строительные материалы из бетона на пористых заполнителях — газобетон, пенобетон, керамзитобетон.

Данные материалы применяются для возведения многоэтажных, частных домов и для дополнительных пристроек: бань, гаражей, сараев.

Керамзитобетон

Полнотелые керамзитобетонные блоки производятся с помощью вибропрессования. Не имеют пустот и отверстий. Часто используются для кладки несущих стен или закладки фундамента.

Пустотелые керамзитобетонные блоки делают с применением специальных форм, позволяющих при заливке смеси сформировать герметичные или сквозные пустоты.

Обладают меньшей прочностью по сравнению с полнотелыми керамзитобетонными блоками. Имеют меньшую теплопроводность, что делает их оптимальным материалом для возведения нетяжёлых конструкций с требуемой высокой теплоизоляцией.

  • Плотность: 500 кг/м³–1 800 кг/м³.
  • Теплопроводность: 0,14–0,66 Вт/м*К.

Газобетон

Изготавливается из газосиликата. С помощью специализированных газообразователей внутри блока формируют приблизительно сферические поры (пустоты), их диаметр 1–3 мм.

  • Плотность: 300–800 кг/м3. Зависит от количества и размера пустот.
  • Теплопроводность: 0,1–0,3 Вт/м*К.

Пенобетон

Изготавливается с применением пенообразующих добавок. Имеет пористую структуру.

  • Плотность: 600–1 000 кг/м3.
  • Теплопроводность: 0,1–0,38 Вт/м*К.

Саманный кирпич

Изготавливается из глины и наполнителя.

  • Плотность: 500 кг/м³–1 900 кг/м³;
  • Теплопроводность: 0,1–0,4 Вт/м*К.

Керамический кирпич

Изготавливается из обожжённой глины.

  • Плотность: полнотелый – 1 600 кг/м³–1 900 кг/м³; пустотелый – 1 100 кг/м³–1 400 кг/м³;
  • Теплопроводность: полнотелый – 0,56–0,86 Вт/м*К; пустотелый–0,35–0,41 Вт/м*К.

Силикатный кирпич

Изготавливается из песка и извести.

  • Плотность: 1 100 кг/м³–1 900 кг/м³;
  • Теплопроводность: 0,81–0,87 Вт/м*К.

Дерево

  • Плотность: 150 кг/м³–2 100 кг/м³;
  • Теплопроводность: 0,2–0,23 Вт/м*К.

Строительные конструкционные материалы, даже с низкой теплопроводностью, нуждаются в дополнительном утеплении.

Хотите узнать о материалах для черновой отделки помещения?

Или почитайте ЗДЕСЬ о несъемной опалубке из пенополистирола.

А в этой статье вы узнаете, как выбрать лотки для ливневки: http://realconstruct.ru/engineer/water/lotki-livnea.html

Утеплители и их теплопроводность

Используются для утепления фундамента, пола, стен здания внутри и снаружи, потолка и крыши.

Пенопласт

  • Плотность: 15 кг/м³–50 кг/м³;
  • Теплопроводность: 0,31–0,33 Вт/м*К.

Пенополистирол

  • Плотность: 15 кг/м³–50 кг/м³;
  • Теплопроводность: 0,028–0,035 Вт/м*К.

Минеральная вата

Минеральная вата имеет способность впитывать влагу. Вода легко накапливается, но очень долго испаряется из данного звуко- и теплоизоляционного материала.

Если минвата перенасытится влагой, то потеряет свои основные изоляционные свойства. Чтобы не допустить впитывание влаги, минвату с двух сторон герметично закупоривают слоем гидроизоляции.

Стекловата

  • Плотность: 15 кг/м³–45 кг/м³;
  • Теплопроводность: 0,038–0,046 Вт/м*К.

Базальтовая (каменная) вата

  • Плотность: 30 кг/м³–200 кг/м³;
  • Теплопроводность: 0,035–0,042 Вт/м*К.

Эковата

  • Плотность: 30 кг/м³–110 кг/м³;
  • Теплопроводность: 0,032–0,041 Вт/м*К.

Сравнительные характеристики теплопроводности конструкционных строительных материалов и утеплителей необходимо проанализировать, выбрав для постройки или дополнительной теплоизоляции самый подходящий материал.

о характеристиках теплоизоляционных материалов

Источник: http://realconstruct.ru/architect/nmaterials/teploprovodnost.html

Вещества с хорошей теплопроводностью и плохой. III. Изучение нового материала. Три интересных факта о теплоизоляции

Низкая теплопроводность это хорошо или плохо

22.02.2019

Люди тоже бывают разной теплопроводности, одни как пух греют, а другие как железо – тепло забирают.

Юрий Сережкин

Слово «тоже» в приведенном высказывании показывает, что к людям понятие «теплопроводности» применяется лишь условно. Хотя…

Знаете ли вы: шуба не греет, она лишь сохраняет тепло, которое вырабатывает организм человека.

Это значит, что человеческое тело обладает способностью проводить тепло и в буквальном, а не только в фигуральном смысле. Это все лирика, на самом же деле мы займёмся сравнением утеплителей по теплопроводности.

Вам виднее, ведь вы сами набрали в поисковике «теплопроводность утеплителей». Что именно вы хотели узнать? А если без шуток, то знать об этом понятии важно, потому что разные материалы очень по-разному ведут себя при использовании.

Важным, хотя и не ключевым моментом при выборе является именно способность материала проводить тепловую энергию.

Если неправильно выбрать теплоизоляционный материал попросту не будет выполнять свою функцию, а именно сохранять тепло в помещении.

Шаг 2: Теория понятие

Из школьного курса физики, скорее всего, помните, что существует три вида теплопередачи:

  • Конвекция;
  • Излучение;
  • Теплопроводность.

А значит теплопроводность – это вид теплопередачи или перемещения тепловой энергии. Это связано с внутренней структурой тел. Одна молекула передает энергию другой. А теперь хотите небольшой тест?

Какой вид веществ пропускает (передает) больше всего энергии?

  • Твердые тела?
  • Жидкости?
  • Газы?

Правильно, больше всего передает энергию кристаллическая решетка твердых тел. Их молекулы находятся ближе друг к другу и поэтому могут взаимодействовать эффективнее. Самой низкой теплопроводностью обладают газы. Их молекулы находятся на наибольшем удалении друг от друга.

Шаг 3: Что может быть утеплителем

Продолжаем наш разговор о теплопроводности утеплителей. Все тела, которые находятся рядом, стремятся уровнять температуру между собой. Дом или квартира, как объект, стремится уровнять температуру с улицей.

Способны ли все строительные материалы быть утеплителями? Нет. Например, бетон пропускает тепловой поток из вашего дома на улицу слишком быстро, поэтому нагревательное оборудование не будет успевать поддерживать нужный температурный режим в помещении.

Коэффициент теплопроводности для утеплителя рассчитывается по формуле:

Где W это наш тепловой поток, а м2 – площадь утеплителя при разнице температур в один Кельвин (Он равен одному градусу Цельсия). У нашего бетона данный коэффициент составляет 1,5. Это значит, что условно, один квадратный метр бетона при разнице температур в один градус Цельсия способен пропустить 1,5 вата тепловой энергии в секунду. Но, существуют материалы с коэффициентом в 0,023.

Ясно, что такие материалы куда лучше подходят на роль утеплителей. Вы спросите, не играет ли значение толщина? Играет. Но, здесь все равно нельзя забыть про коэффициент теплопередачи. Чтобы добиться одинаковых результатов понадобится бетонная стена толщиной 3,2 м или лист пенопласта толщиной 0,1 м. Ясно, что хотя бетон и может формально быть утеплителем, экономически это нецелесообразно.

Поэтому:

Утеплителем можно назвать материал, проводит через себя наименьшее количество тепловой энергии, не давая ей уйти из помещения и при этом стоить как можно дешевле.

Лучший теплоизолятор – это воздух. Поэтому задача любого утеплителя создание фиксированной воздушной прослойки без конвекции (перемещения) воздуха внутри нее. Именно поэтому, например, пенопласт на 98% состоит из воздуха. Самыми распространёнными утепляющими материалам считаются:

  • Пенопласт;
  • Экструдированный пенополистирол;
  • Минвата;
  • Пенофол;
  • Пеноизол;
  • Пеностекло;
  • Пенополиуретан (ППУ);
  • Эковата (целлюлоза);

Теплоизоляционные свойства всех перечисленных выше материалов лежат близко к данным пределам. Также стоит учесть: чем выше плотность материала, тем больше он проводит через себя энергии. Помните из теории? Чем ближе молекулы, тем эффективнее проводится тепло.

Шаг 4: Сравниваем. Таблица теплопроводности утеплителей

В таблице приводится сравнение утеплителей по теплопроводности заявленной производителями и соответствующие ГОСТам:

Сравнительная таблица теплопроводности строительных материалов, которые не принято считать утеплителями:

Показатель теплопередачи лишь указывает на скорость передачи тепла от одной молекуле к другой. Для реальной жизни этот показатель не так важен. А вот без теплового расчета стены не обойтись. Сопротивление теплопередаче – величина обратная теплопроводности.

Речь идет о способности материала (утеплителя) задерживать тепловой поток. Чтобы рассчитать сопротивление теплопередаче нужно разделить толщину на коэффициент теплопроводности. На примере ниже показан расчет теплового сопротивления стены из бруса толщиной 180 мм.

Как видно, теплосопротивление такой стены составит 1,5. Достаточно? Это зависит от региона. В примере показан расчет для Красноярска. Для этого региона нужный коэффициент сопротивления ограждающих конструкций установлен на уровне 3,62. Ответ ясен. Даже для Киева, который намного южнее данный показатель равняется 2,04.

Тепловое сопротивление – величина обратная теплопроводности.

А значит, способности деревянного дома сопротивляться потере тепла недостаточно. Необходимо утепление, а уже, каким материалом – рассчитывайте по формуле.

Шаг 5: Правила монтажа

Стоит сказать, что все указанные выше показатели приведены для СУХИХ материалов. Если материл, намокнет, он потеряет свои свойства как минимум наполовину, а то и вовсе превратится в «тряпку».

Поэтому нужно защищать теплоизоляцию. Пенопластом чаще всего утепляют под мокрый фасад, в котором утеплитель защищен слоем штукатурки.

На минвату накладывается гидроизоляционная мембрана, чтобы не допустить попадание влаги.

Еще один момент, который заслуживает внимания – ветрозащита. Утеплители имеют разную пористость. Например, сравним плиты пенополистирола и минеральную вату. Если первый на вид выглядит цельным, на втором явно видны поры или волокна.

Поэтому, если вы монтируете волокнистую теплоизоляцию, например, минвату или эковату на продуваемом ветром ограждении обязательно позаботьтесь о ветрозащите. В противном случае от хороших термических показателей утеплителя не будет пользы.

Выводы

Источник: https://samimiy.ru/arrangement/substances-with-good-thermal-conductivity-and-poor-iii.html

Теплопроводность и коэффициент теплопроводности. Что это такое

Низкая теплопроводность это хорошо или плохо

Так что же такое теплопроводность? С точки зрения физики теплопроводность – это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).

Можно сказать проще, теплопроводность – это  способность материала проводить тепло. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной.

Передача тепла происходит за счет передачи энергии при столкновении молекул вещества. Происходит это до тех пор, пока температура внутри тела не станет одинаковой.

Такой процесс может происходить в твердых, жидких и газообразных веществах.

На практике, например в строительстве при теплоизоляции зданий, рассматривается другой аспект теплопроводности, связанный с передачей тепловой энергии. В качестве примера возьмем “абстрактный дом”.

В “абстрактном доме” стоит нагреватель, который поддерживает внутри дома постоянную температуру, скажем, 25 °С. На улице температура тоже постоянная, например, 0 °С.

Вполне понятно, что если выключить обогреватель, то через некоторое время в доме тоже будет 0 °С. Все тепло (тепловая энергия) через стены уйдет на улицу.

Чтобы поддерживать температуру в доме 25 °С, нагреватель должен  постоянно работать. Нагреватель постоянно создает тепло, которое постоянно уходит через стены на улицу.

Коэффициент теплопроводности

Количество тепла, которое проходит через стены (а по научному – интенсивность теплопередачи за счет теплопроводности) зависит от разности температур (в доме и на улице), от площади стен и теплопроводности материала, из которого сделаны эти стены.

Для количественной оценки теплопроводности существует коэффициент теплопроводности материалов. Этот коэффициент отражает свойство вещества проводить тепловую энергию. Чем больше значение коэффициента теплопроводности материала, тем лучше он проводит тепло.

Если мы собираемся утеплять дом, то надо выбирать материалы с небольшим значением этого коэффициента. Чем он меньше, тем лучше. Сейчас  в качестве материалов для утепления зданий  наибольшее распространение получили утеплители из минеральной ваты, и различных пенопластов.

Набирает популярность новый материал с улучшенными теплоизоляционными качествами – Неопор.

Коэффициент теплопроводности материалов обозначается буквой ? (греческая строчная буква лямбда)  и выражается в Вт/(м2*К). Это означает, что если взять стену из кирпича, с коэффициентом теплопроводности 0,67 Вт/(м2*К), толщиной 1 метр и площадью 1 м2.

, то при разнице температур в 1 градус, через стену будет проходить 0,67 ватта тепловой энергии. Если разница температур будет 10 градусов, то будет проходить уже 6,7 ватта. А если при такой разнице температур  стену сделать 10 см, то потери тепла будут уже 67 ватт.

Подробней о методике расчета теплопотерь зданий можно посмотреть здесь.

Следует отметить, что значения коэффициента теплопроводности материалов указываются для толщины материала в 1 метр. Чтобы определить теплопроводность материала для любой другой толщины, надо коэффициент теплопроводности разделить на нужную толщину, выраженную в метрах.

В строительных нормах и расчетах часто используется понятие “тепловое сопротивление материала”. Это величина обратная теплопроводности.  Если, на пример, теплопроводность пенопласта толщиной 10 см – 0,37 Вт/(м2*К), то его тепловое сопротивление будет равно 1 / 0,37 Вт/(м2*К) = 2,7 (м2*К)/Вт.

Коэффициент теплопроводности материалов

Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.

МатериалКоэфф. тепл. Вт/(м2*К)
Алебастровые плиты0,470
Алюминий230,0
Асбест (шифер)0,350
Асбест волокнистый0,150
Асбестоцемент1,760
Асбоцементные плиты0,350
Асфальт0,720
Асфальт в полах0,800
Бакелит0,230
Бетон на каменном щебне1,300
Бетон на песке0,700
Бетон пористый1,400
Бетон сплошной1,750
Бетон термоизоляционный0,180
Битум0,470
Бумага0,140
Вата минеральная легкая0,045
Вата минеральная тяжелая0,055
Вата хлопковая0,055
Вермикулитовые листы0,100
Войлок шерстяной0,045
Гипс строительный0,350
Глинозем2,330
Гравий (наполнитель)0,930
Гранит, базальт3,500
Грунт 10% воды1,750
Грунт 20% воды2,100
Грунт песчаный1,160
Грунт сухой0,400
Грунт утрамбованный1,050
Гудрон0,300
Древесина – доски0,150
Древесина – фанера0,150
Древесина твердых пород0,200
Древесно-стружечная плита ДСП0,200
Дюралюминий160,0
Железобетон1,700
Зола древесная0,150
Известняк1,700
Известь-песок раствор0,870
Ипорка (вспененная смола)0,038
Камень1,400
Картон строительный многослойный0,130
Каучук вспененный0,030
Каучук натуральный0,042
Каучук фторированный0,055
Керамзитобетон0,200
Кирпич кремнеземный0,150
Кирпич пустотелый0,440
Кирпич силикатный0,810
Кирпич сплошной0,670
Кирпич шлаковый0,580
Кремнезистые плиты0,070
Латунь110,0
Лед 0°С2,210
Лед -20°С2,440
Липа, береза, клен, дуб (15% влажности)0,150
Медь380,0
Мипора0,085
Опилки – засыпка0,095
Опилки древесные сухие0,065
ПВХ0,190
Пенобетон0,300
Пенопласт ПС-10,037
Пенопласт ПС-40,040
Пенопласт ПХВ-10,050
Пенопласт резопен ФРП0,045
Пенополистирол ПС-Б0,040
Пенополистирол ПС-БС0,040
Пенополиуретановые листы0,035
Пенополиуретановые панели0,025
Пеностекло легкое0,060
Пеностекло тяжелое0,080
Пергамин0,170
Перлит0,050
Перлито-цементные плиты0,080
Песок 0% влажности0,330
Песок 10% влажности0,970
Песок 20% влажности1,330
Песчаник обожженный1,500
Плитка облицовочная1,050
Плитка термоизоляционная ПМТБ-20,036
Полистирол0,082
Поролон0,040
Портландцемент раствор0,470
Пробковая плита0,043
Пробковые листы легкие0,035
Пробковые листы тяжелые0,050
Резина0,150
Рубероид0,170
Сланец2,100
Снег1,500
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности)0,150
Сосна смолистая (600…750 кг/куб.м, 15% влажности)0,230
Сталь52,0
Стекло1,150
Стекловата0,050
Стекловолокно0,036
Стеклотекстолит0,300
Стружки – набивка0,120
Тефлон0,250
Толь бумажный0,230
Цементные плиты1,920
Цемент-песок раствор1,200
Чугун56,0
Шлак гранулированный0,150
Шлак котельный0,290
Шлакобетон0,600
Штукатурка сухая0,210
Штукатурка цементная0,900
Эбонит0,160

Источник: http://www.econel.ru/teploprovodnost/

Таблица теплопроводности и других качеств утеплителей, сравнение популярных материалов для теплоизоляции

Низкая теплопроводность это хорошо или плохо

Да, в нашей стране, в отличие от стран с жарким климатом, бывают лютые зимы. Именно поэтому нужно строиться из теплых материалов с использованием специальных утеплителей. В ином случае все дорогое тепло от котлов и печей будет уходить через стены и другие перекрытия.

Нам нужно точно знать, какие из современных популярных материалов для утепления наиболее эффективны.

Таблица теплопроводности утеплителей

В таблице указаны данные по наиболее широко применяемым утеплителям, которые используют в частном строительстве: минеральной ваты, пенополистирола, пенополиуретана и пенопласта. Также приведены сравнительные данные по другим видам.

Таблица теплопроводности утеплителей

Сравнение «+» и «-» поможет определить, какой утеплитель выбрать для конкретных целей.

Полезные показатели утеплителей

На какие основные показатели нужно обратить внимание при выборе утеплителя:

  • Теплопроводность при выборе утеплителя материала является основным показателем. Чем она ниже, тем лучшая теплоизоляция у этого материала;
  • Плотность напрямую влияет на массу материала, от нее зависит, какая дополнительная нагрузка придется на стены или перекрытия дома. Это очень просто вычислить, зная объем утеплителя и его плотность. Обычно теплоизоляционные свойства падают с ростом плотности материала. Чем легче утеплитель, тем проще с ним работать, а нагрузка на перекрытия будет минимальной;
  • Паропроницаемость показывает, как материал пропускает водяной пар. Высокий коэффициент говорит о том, что материал может увлажняться. Наоборот, низкий коэффициент указывает то, что материал не пропускает пар и образует конденсат. Материалы можно делить на 2 вида: а) ваты – материалы, состоящие из волокон. Они паропроницаемы; б) пены – это затвердевшая пенная масса особого вещества. Не пропускают пар ;
  • Водопоглощение — это способность вещества впитывать воду. Чем она выше, тем менее материал пригоден для утепления, тем более для наружных теплоизоляционных работ, ванной, кухни и других мест с повышенной влажностью;
  • Горючесть довольно понятный показатель, очевидно, что наилучшие материалы для утепления те, которые не горят. Также пригодны самозатухающие варианты;
  • Прочность на сжатие — это способность материала сохранить свою форму и толщину при механическом воздействии. Многие материалы хороши как утеплитель, но могут сжиматься, при этом снижаются их теплоизоляционные качества;
  • Хрупкость нежелательна для утеплителя, хотя и не является основополагающим качеством при выборе;
  • Долговечность определяет срок службы материала;
  • Толщина материала определяет, сколько пространства будет занимать теплоизоляция. При внутренних работах это важно, ведь чем тоньше слой материала, тем меньше полезного пространств он «съест»;
  • Экологичность материала особенно важна при выполнении внутреннего утепления. Нужно обратить внимание, не разлагается ли утеплитель на опасные составляющие, а также не выделяет ли он при пожаре токсичных веществ.

Цель такого тщательного изучения утеплителей одна — узнать, какой из них лучше всех. Однако, это палка о двух концах, ведь материалы с высокой термоизоляцией могут иметь другие нежелательные характеристики.

Пенополиуретан или экструдированный пенополистирол

Нетрудно определить по таблице, что чемпион по теплоизоляции – это пенополиуретан. Но и цена его гораздо выше, нежели у полистирола или пенопласта.

Все потому что он обладает двумя наиболее востребованными в строительстве качествами: негорючесть и водоотталкивающие свойства.

Его трудно поджечь, поэтому пожарная безопасность такого утепления высока, к тому же он не боится намокнуть.

Но у пенополиуретана появилась настоящая альтернатива – экструдированный пенополистирол. По сути это тот же пенопласт, но прошедший дополнительную обработку – экструдировку, которая улучшила его.

Это материал с равномерной структурой и замкнутыми ячейками, который представлен в виде листов разной толщины. От обычного пенопласта его отличает усиленная прочность и способность выдерживать механическое давление. Именно поэтому его можно назвать достойным конкурентом пенополиуретану.

Единственный недостаток монтажа отдельных плит – швы, которые успешно заделываются монтажной пеной.

А уж чем вам удобнее пользоваться – жидким утеплителем из баллончика или плитами, выбирать только вам. Но помните, что эти материалы не «дышат» и могут образовывать эффект запотевших окон, так что все утепление может уйти из форточки во время проветривания. Поэтому утеплять такими материалами нужно разумно.

Если сравнивать минеральную вату и пенопласт, то их теплопроводность находится на одном уровне ≈ 0,5. Поэтому выбирая между этими материалами, неплохо было бы оценить и другие качества, такие как водопроницаемость.

Так, монтаж ваты в местах с возможным намоканием нежелательна, поскольку она теряет свойства теплоизоляции на 50% при намокании на 20%. С другой стороны, вата «дышит» и пропускает пар, так что не будет образовываться конденсата.

В доме, который утеплен ватой из базальтового волокна, не будут запотевать окна. И вата, в отличие от пенопласта, не горит.

Другие утеплители

Весьма популярны сейчас эко-материалы, такие как опилки, которые смешивают с глиной и используют для стен. Однако, такой приятный по цене материал как опилки, имеет много недостатков: горит, намокает и гниет. Не говоря уже о том, что набирая влагу, опилки теряют теплоизоляционные свойства.

Также набирает популярности дешевое и экологичное пеностекло, которое можно применять только без нагрузок, поскольку он весьма хрупок.

Выбирая утеплитель

Цены на энергоносители растут, и вместе с тем растет популярность на утеплители. В нашей статье представлена таблица теплопроводности материалов для утепления и сравнительный анализ популярных видов утеплителей.

Главное, что хотелось бы отметить — хорошие показатели вы получите, приобретая только качественный сертифицированный продукт. Выбор теплоизоляционных материалов на рынке весьма широк и один вид утеплителя предлагается более чем пятью производителями.

Много из них могут вас огорчить своим качеством, поэтому ориентируйтесь на отзывы тех, кто испытал конкретные торговые марки на «своей шкуре».

  • Вадим Николаевич Лозинский
  • Распечатать

Источник: https://kotel.guru/uteplenie/utepliteli/tablica-teploprovodnosti-i-drugih-kachestv-materialov-dlya-utepleniya.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.