Теплопроводность меди больше чем теплопроводность стали

Содержание

Теплопроводность металлов

Теплопроводность меди больше чем теплопроводность стали

Все изделия, используемые человеком, способны передавать и сохранять температуру прикасаемого к ним предмета или окружающей среды. Способность отдачи тепла одного тела другому зависит от вида материала, через который проходит процесс.

Свойства металлов позволяют передавать тепло от одного предмета другому, с определенными изменениями, в зависимости от структуры и размера металлической конструкции.

Теплопроводность металлов – один из параметров, определяющих их эксплуатационные возможности.

Что такое теплопроводность и для чего нужна

Процесс переноса энергии атомов и молекул от горячих предметов к изделиям с холодной температурой, осуществляется при хаотическом перемещении движущихся частиц. Такой обмен тепла зависит от агрегатного состояния металла, через который проходит передача.

В зависимости от химического состава материала, теплопроводность будет иметь различные характеристики.

Данный процесс называют теплопроводностью, он заключается в передаче атомами и молекулами кинетической энергии, определяющей нагрев металлического изделия при взаимодействии этих частиц, или передается от более теплой части – к той, которая меньше нагрета.

Способность передавать или сохранять тепловую энергию, позволяет использовать свойства металлов для достижения необходимых технических целей в работе различных узлов и агрегатов оборудования, используемого в народном хозяйстве.

Примером такого применения может быть паяльник, нагревающийся в средней части и передающий тепло на край рабочего стержня, которым выполняют пайку необходимых элементов.

Зная свойства теплопроводности, металлы применяют во всех отраслях промышленности, используя необходимый параметр по назначению.

Понятие термического сопротивления и коэффициента теплопроводности

Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.

Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.

Таблица 1

МеталлКоэффициент теплопроводности металлов при температура, °С
– 1000100300700
Алюминий2,452,382,302,260,9
Бериллий4,12,31,71,250,9
Ванадий0,310,34
Висмут0,110,080,070,110,15
Вольфрам2,051,901,651,451,2
Гафний —0,220,21
Железо0,940,760,690,550,34
Золото3,33,13,1
Индий0,25
Иридий1,511,481,43
Кадмий0,960,920,900,950,44 (400°)
Калий0,990,420,34
Кальций0,98
Кобальт0,69
Литий0,710,73
Магний1,61,51,51,45
 Медь4,053,853,823,763,50
Молибден1,41,43 —1,04 (1000°)
Натрий1,351,350,850,760,60
Никель0,970,910,830,640,66
Ниобий0,490,490,510,56
Олово0,740,640,600,33
Палладий0,690,670,74
Платина0,680,690,720,760,84
Рений0,71
Родий1,541,521,47
Ртуть0,330,090.10,115
Свинец0,370,350,3350,3150,19
Серебро4,224,184,173,62
Сурьма0,230,180,170,170,21
Таллий0,410,430,490,25 (400 0)
Тантал0,540,54
Титан0,160,15
Торий0,410,390,400,45
Уран0,240,260,310,40
Хром0,860,850,800,63
Цинк1,141,131,091,000,56
Цирконий0,210,200,19

От чего зависит показатель теплопроводности

Изучая способность передачи тепла металлическими изделиями выявлено, что теплопроводность зависит от:

  • вида металла;
  • химического состава;
  • пористости;
  • размеров.

Металлы имеют различное строение кристаллической решетки, а это может изменить теплопроводность материала. Так, например, у стали и алюминия, особенности строения микрочастиц влияют по-разному на скорость передачи тепловой энергии через них.

Коэффициент теплопроводности может иметь различные значения для одного и того же металла при изменении температуры воздействия. Это связано с тем, что у разных металлов градус плавления отличается, а значит, при других параметрах окружающей среды, свойства материалов также будут отличаться, а это отразится на теплопроводности.

Методы измерения

Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.

Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями.

Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину.

Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.

Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.

Теплопроводность стали, меди, алюминия, никеля и их сплавов

Обычное железо и цветные металлы имеют разное строение молекул и атомов. Это позволяет им отличаться друг от друга не только механическими, но и свойствами теплопроводности, что, в свою очередь, влияет на применение тех или иных металлов в различных отраслях хозяйства.

Таблица 2

Сталь имеет коэффициент теплопроводности, при температуре окружающей среды 0 град. (С), равный 63, а при увеличении градуса до 600, он снижается до 21 Вт/м*град.

Алюминий, в таких же условиях, наоборот – увеличит значение от 202 до 422 Вт/м*град. Сплавы из алюминия, будут также повышать теплопроводность, по мере увеличения температуры.

Только величина коэффициента будет на порядок ниже, в зависимости от количества примесей, и колебаться в пределах от 100 до 180 единиц.

Медь, при изменении температуры в тех же пределах, будет уменьшать теплопроводность от 393 до 354 Вт/м*град. При этом, медь содержащие сплавы латуни будут иметь такие же свойства, как и алюминиевые, а значение теплопроводности будет изменяться от 100 до 200 единиц, в зависимости от количества цинка и других примесей в составе сплава латуни.

Коэффициент теплопроводности чистого никеля считается низким, он будет менять свое значение от 67 до 57 Вт/м*град.

Сплавы с содержанием никеля, будут также иметь коэффициент с пониженным значением, который, благодаря содержанию железа и цинка, колеблется от 20 до 50 Вт/м*град.

А наличие хрома, позволит понизить теплопроводность в металлах до 12 единиц, с небольшим увеличением этой величины, при нагреве.

Применение

Агрегатное состояние материалов имеет отличительную структуру строения молекул и атомов. Именно это оказывает большое влияние на металлические изделия и их свойства, в зависимости от назначения.

Отличающийся химический состав узлов и деталей из железа, позволяет обладать различной теплопроводностью. Это связано со структурой таких металлов как чугун, сталь, медь и алюминий.

Пористость чугунных изделий способствует медленному нагреванию, а плотность медной структуры – наоборот, ускоряет процесс теплоотдачи. Эти свойства используют для быстрого отвода тепла или постепенного нагревания продукции инертного назначения.

Примером использования свойств металлических изделий является:

  • кухонная посуда с различными свойствами;
  • оборудование для пайки труб;
  • утюги;
  • подшипники качения и скольжения;
  • сантехническое оборудование для подогрева воды;
  • приборы отопления.

Медные трубки широко используют в радиаторах автомобильных систем охлаждения и кондиционеров, применяемых в быту. Чугунные батареи сохраняют тепло в квартире, даже при непостоянной подаче теплоносителя требуемой температуры. А радиаторы из алюминия, способствуют быстрой передаче тепла отапливаемому помещению.

При возникновении высокой температуры, в результате трения металлических поверхностей, также важно учитывать теплопроводность изделия.

В любом редукторе или другом механическом оборудовании, способность отводить тепло, позволит деталям механизма сохранить прочность и не быть подвергнутыми разрушению, в процессе эксплуатации.

Знание свойств теплопередачи различных материалов, позволит грамотно применить те или иные сплавы из цветных или черных металлов.

Источник: https://prompriem.ru/metally/teploprovodnost.html

Теплопроводность стали и других сплавов меди, латуни и алюминия, теплопередача

Теплопроводность меди больше чем теплопроводность стали

Теплопроводность алюминия выше теплопроводности железа более чем в 3 раза, что приводит к сильному теплоотводу и широкой зоне разогрева металла, прилегающего к шву.

Теплопроводность алюминия в пять раз больше теплопроводности чугуна, и поэтому алюминиевые сплавы часто заменяют чугун при изготовлении поршней двигателей внутреннего сгорания. Кроме того, поршень из алюминиевого сплава, будучи легче чугунного примерно в три раза, облегчает вес конструкции. Металлы с большой теплопроводностью в то же время являются лучшими проводниками электричества.

Схема аргонового хроматографа фирмы Пай.  

Большая теплоемкость и теплопроводность алюминия обеспечивают равномерную температуру по всей длине трубки.

В виду того что теплопроводность алюминия почти в пять раз выше теплопроводности стали, время нагрева, а следовательно и время вулканизации резиновых смесей в прессформах из этого материала сокращается. Однако следует отметить, что пресс-формы из алюминия быстро изнашиваются, что является их существенным недостатком.

Влияние легирующих добавок на коэффициент линейного теплового расширения алюминия в присутствии второго.  

Примеси оказывают существенное влияние на теплопроводность алюминия в области низких температур.

Теплопроводность оксидной пленки намного хуже теплопроводности алюминия, но вследствие незначительной толщины пленки это не оказывает заметного влияния на общую теплопроводность изделия.

Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза меньше теплопроводности железа. С повышением температуры теплопроводность титана несколько понижается и при 700 С составляет 0 0309 кал / см сек СС.

Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза меньше теплопроводности железа. С повышением температуры теплопроводность титана несколько понижается и при 700 С составляет 0 0309 кал / см сек С.

Поэтому, например, теплопроводность титана в 8 — 10 раз меньше теплопроводности алюминия.

Коэффициент теплопроводности меди, серебра и стали изменяется с температурой незначительно, теплопроводность алюминия возрастает в интервале 0 — 400 С приблизительно в 1 6 раза.

При высоких температурах серебро испаряется интенсивнее меди, а медь окисляется и взаимодействует с парами теллуридов. Поэтому для медных шин целесообразно использовать защиту слоем железа.

Контакт шин с термоэлементами осуществляется через промежуточные слои, исключающие диффузию материала шины в термоэлектрический материал.

Поэтому, например, теплопроводность титана в 8 — 10 раз меньше теплопроводности алюминия.

Из сопоставления приведенных данных для алюминия с теплофизи-ческими характеристиками щелочных металлов следует, что температура кипения и теплопроводность алюминия значительно больше, а сечение захвата тепловых нейтронов значительно меньше соответствующих величин — для щелочных металлов.

Имея в виду, что остальные теплофи-зические характеристики сравниваемых металлов приближенно одинаковы, и учитывая также малую упругость паров алюминия при высоких температурах, можно сделать заключение, что с точки зрения теплофи-зических характеристик алюминий, как теплоноситель, имеет определенные преимущества по сравнению со щелочными металлами при решении задач, связанных с высокой температурой теплоносителя.

Следует подчеркнуть, что так как собственно переходное электрическое сопротивление сварных точек ( RK) очень мало ( оно измеряется долями мком), а теплопроводность алюминия и меди велика, то никогда не происходит перегрева в месте сварки при прохождении тока даже и в тех случаях, когда суммарное сечение сварных точек значительно меньше рабочего сечения самой шины. Это тщательно проверено длительными лабораторными и эксплуатационными испытаниями.

Характеристика теплопроводности материалов

Понятие теплопроводности материалов характеризуется способностью переносить тепловую энергию в пределах определенного объекта от нагретых частей к холодным. Процесс осуществляется атомами, молекулами, электронами и происходит в любых телах с неравномерным распределением температуры.

С позиций кинетической физики этот процесс происходит в результате взаимодействия частиц молекул более нагретых участков в пределах образца с другими элементами, отличающимися низшей температурой. Механизм и скорость переноса теплоты зависит от агрегатного состояния вещества.

https://.com/watch?v=z8JhdvjYrl8

Категория теплопроводности предусматривает определение скорости нагревания образца материала и перемещение температурной волны в определенном направлении. Показатель зависит от физических параметров:

  • плотности;
  • температуры фазового перехода в жидкое состояние
  • скорости распространения звука (для диэлектриков).

Теплопроводность — алюминий

Прочность алюминиевой оболочки в несколько раз выше свинцовой, алюминий в 4 2 раза легче свинца ( удельный вес 2 7 и 11 4 соответственно), теплопроводность алюминия примерно в шесть раз выше, чем у свинца, его сопротивление усталости при вибрации в 25 раз больше, чем у свинца. В четырехпроводных сетях переменного тока напряжением до 1000 в с глухозаземленной нейтралью допускается использование алюминиевой оболочки в качестве нулевого рабочего провода.

В этом уравнении di 15 5 — 10 — 3 ( м) — наружный диаметр графитового баллона; d0 1 1 45 — 10 — 3 ( м) — диаметр сечения испытуемого расплавленного металла; q ( z) ( ккал / м2 — час) — тепловой поток на наружной поверхности графитового баллона; К AI и гр ( ккал / м — час — град) — соответственно коэффициенты теплопроводности алюминия и графита.

Из металлов лучше всего проводят тепло серебро и медь. Теплопроводность алюминия примерно в 2 5 раза, железа в в раз, свинца в 12 раз меньше, чем меди.

Корродирующее действие некоторых компонентов флюса на алюминий нейтрализуются промывкой шва и поверхности деталей 10 % — ным раствором азотной кислоты в теплой воде и в последующем горячей водой.

Теплопроводность алюминия почти в 5 раз, а теплоемкость в 2 раза больше, чем стали, поэтому при сварке алюминия необходимо поддерживать более высокую температуру пламени, чем температура плавления алюминия.

Диаграмма прочности алюминия при нагреве в процессе сварки.  

Теплопроводность алюминия в 3 раза больше, чем у стали, коэффициент расширения в 2 раза превышает коэффициент расширения стали.

Кристаллическая решетка алюминия состоит, как и у многих других металлов, из гра-нецентрированных кубов ( см. стр. Теплопроводность алюминия вдвое больше теплопроводности железа и равна половине теплопроводности меди. Его электропроводность намного выше электропроводности железа и достигает 60 % электропроводности меди.

Из металлов лучше всего проводят тепло серебро и медь. Теплопроводность алюминия примерно в 2 5 раза, железа в б раз, свинца в 12 раз меньше, ч м меди.

С понижением чистоты алюминия теплопроводность уменьшается, а с повышением температуры несколько увеличивается. При 100 теплопроводность алюминия составляет — 66 5 % теплопроводности серебра.

Если это количество теплоты известно, то для сечения z по замеренному значению градиента температур в нем можно рассчитать величину коэффициента теплопроводности образца. Окончательный расчет искомой величины коэффициента теплопроводности алюминия состоит в расчете поправки для коэффициента теплопроводности образца на теплоту, проходящую по стенкам графитового баллона.

Некоторые свойства титана, циркония и гафния.  

Атомная структура титана, его большое сродство к электрону оказывают сильное влияние на такие свойства, как электропровод ность и теплопроводность. Теплопроводность его в 8 — 10 раз меньше теплопроводности алюминия. Это имеет существенное значение, например, при обработке металла резанием.

Модуль упругости титана почти вдвое меньше модуля упругости железа, находится на одном уровне с модулем медных сплавов и значительно выше, чем у алюминия.

Теплопроводность титана низкая: она составляет около 7 % от теплопроводности алюминия и 16 5 % от теплопроводности железа. Это необходима учитывать при нагреве металла для обработки давлением и при сварке.

Электросопротивление титана примерно в 6 раз больше чем у железа и в 20 раз больше, чем у алюминия.

Модуль упругости титана почти вдвое меньше модуля упругости железа, находится на одном уровне с модулем медных сплавов и значительно выше, чем у алюминия.

Теплопроводность, титана низкая: она составляет около 7 % от теплопроводности алюминия и 16 5 % от теплопроводности железа.

Стеклопласты на основе фенольных смол имеют теплопроводность такого же порядка. Для сравнения следует заметить, что теплопроводность стали равна, 40, а теплопроводность алюминия находится в пределах от 175 до 200 ккал / м-ч-град.

( пока нет)
Загрузка…

Источник: https://vse-otoplenie.ru/teplootdaca-aluminia

О теплопроводности меди и ее сплавов

Теплопроводность меди больше чем теплопроводность стали

Высокая теплопроводность меди и другие ее полезные характеристики послужили одной из причин раннего освоения этого металла человеком. И по сей день медь и медные сплавы находят применение почти во всех областях нашей жизни.

Немного о теплопроводности

Под теплопроводностью в физике понимают перемещение энергии в объекте от более нагретых мельчайших частиц к менее нагретым. Благодаря этому процессу выравнивается температура рассматриваемого предмета в целом.

Величина способности проводить тепло характеризуется коэффициентом теплопроводности.

Данный параметр равен количеству тепла, которое пропускает через себя материал толщиной 1 метр через площадь поверхности 1 м2 в течение одной секунды при единичной разнице температур.

МатериалКоэффициент теплопроводности, Вт/(м*К)
Серебро428
Медь394
Алюминий220
Железо74
Сталь45
Свинец35
Кирпич0,77

Медь обладает коэффициентом теплопроводности 394 Вт/(м*К) при температуре от 20 до 100 °С. Соперничать с ней может только серебро. А у стали и железа этот показатель ниже в 9 и 6 раз соответственно (см. таблицу).

Стоит отметить, что теплопроводность изделий, изготовленных из меди, в значительной мере зависит от примесей (впрочем, это касается и других металлов).

Например, скорость проводимости тепла снижается, если в медь попадают такие вещества, как:

  • железо;
  • мышьяк;
  • кислород;
  • селен;
  • алюминий;
  • сурьма;
  • фосфор;
  • сера.

Если добавить к меди цинк, то получится латунь, у которой коэффициент теплопроводности намного ниже. В то же время добавление других веществ в медь позволяет существенно снизить стоимость готовых изделий и придать им такие характеристики, как прочность и износостойкость. К примеру, для латуни характерны более высокие технологические, механические и антифрикционные свойства.

Поскольку для высокой теплопроводности характерно быстрым распространение энергии нагрева по всему предмету, медь получила широкое применение в системах теплообмена. На данный момент из нее изготавливают радиаторы и трубки для холодильников, вакуумных установок и автомашин для быстрого отвода тепла. Также медные элементы применяют в отопительных установках, но уже для обогрева.

Медный радиатор отопления

Чтобы поддерживать теплопроводность металла на высоком уровне (а значит, делать работу устройств из меди максимально эффективной), во всех системах теплообмена используют принудительный обдув вентиляторами. Такое решение вызвано тем, что при повышении температуры среды теплопроводность любого материала существенно понижается, ведь теплоотдача замедляется.

Алюминий и медь – что лучше?

У алюминия есть один минус по сравнению с медью: его теплопроводность в 1,5 раза меньше, а именно 201–235 Вт/(м*К). Однако по сравнению с другими металлами это достаточно высокие значения. Алюминий так же, как и медь, обладает высокими антикоррозийными свойствами. Кроме того, он имеет такие преимущества, как:

  • малая плотность (удельный вес в 3 раза меньше, чем у меди);
  • низкая стоимость (в 3,5 раза меньше, чем у меди).

Алюминиевый радиатор отопления

Благодаря простым расчетам получается, что алюминиевая деталь может оказаться дешевле медной практически в 10 раз, ведь она весит намного меньше и изготовлена из более дешевого материала.

Этот факт наряду с высокой теплопроводностью позволяет использовать алюминий в качестве материала для посуды и пищевой фольги для духовых шкафов.

Главный недостаток алюминия состоит в том, что он является более мягким, поэтому его можно использовать только в составе сплавов (например, дюралюминия).

Для эффективного теплообмена важную роль играет скорость отдачи тепла в окружающую среду, и этому активно способствует обдув радиаторов. В результате меньшая теплопроводность алюминия (относительно меди) нивелируется, а вес и стоимость оборудования снижаются. Эти важные плюсы позволяют алюминию постепенно вытеснять медь из использования в системах кондиционирования.

Использование меди в электронике

В некоторых отраслях, к примеру, в радиопромышленности и электронике, медь является незаменимой.

Дело в том, что этот металл по природе своей очень пластичен: его можно вытянуть крайне тонкую проволоку (0,005 мм), а также создать другие специфические токопроводящие элементы для электронных приборов.

А высокая теплопроводность позволяет меди крайне эффективно отводить неизбежно возникающее при работе электроприборов тепло, что очень важно для современной высокоточной, но в то же время компактной техники.

Актуально использование меди в тех случаях, когда требуется сделать наплавку определенной формы на стальную деталь. При этом применяется шаблон из меди, который не соединяется с привариваемым элементом. Использование алюминия для этих целей невозможно, так как он будет расплавлен или прожжен. Стоит также упомянуть, что медь способна выполнить роль катода при сварке угольной дугой.

1 — шестерня, 2 — крепления шаблонов, 3 — наплавляемый зуб шестерни, 4 — медные шаблоны

Недостатки высокой теплопроводности меди и ее сплавов

Медь обладает куда более высокой стоимостью, чем латунь или алюминий. При этом у данного металла есть свои недостатки, напрямую связанные с его достоинствами.

Высокая теплопроводность приводит к необходимости создавать специальные условия во время резки, сварки и пайки медных элементов. Так как нагревать медные элементы нужно намного более концентрировано по сравнению со сталью.

Также часто требуется предварительный и сопутствующий подогрев детали.

Не стоит забывать и о том, что медные трубы требуют тщательной изоляции в том случае, если из них состоит магистраль или разводка системы отопления. Что приводит к увеличению стоимости монтажа сети в сравнении с вариантами, когда применяются другие материалы.

Пример теплоизоляции медных труб

Сложности возникают и с газовой сваркой меди: для этого процесса потребуются более мощные горелки. При сварке металла толщиной 8–10 мм потребуются две-три горелки. Пока одна горелка используется для сварки, другими ведется подогрев детали. В целом сварочные работы с медью требуют повышенных расходов на расходные материалы.

Следует сказать и о необходимости использования специальных инструментов. Так, для резки латуни и бронзы толщиной до 15 см понадобится резак, способный работать с высокохромистой сталью толщиной в 30 см. Причем этого же инструмента хватит для работы с чистой медью толщиной всего лишь в 5 см.

Можно ли повысить теплопроводность меди?

Медь широко используется при создании микросхем электронных устройств и призвана отводить тепло от нагреваемых электрическим током деталей.

При попытке увеличить быстродействие современных компьютеров разработчики столкнулись с проблемой охлаждения процессоров и других деталей. В качестве одного из решений применялся вариант разбиения процессора на несколько ядер.

Однако данный способ борьбы с перегревом себя исчерпал, и сейчас требуется искать новые проводники с более высокой теплопроводностью и электропроводимостью.

Одним из решений этой проблемы является недавно открытый элемент графен. Благодаря напылению из графена теплопроводность медного элемента увеличивается на 25%. Однако пока изобретение находится на уровне разработки.

Источник: http://met-all.org/cvetmet-splavy/med/teploprovodnost-medi-i-ee-splavov.html

Что такое теплопроводность и термическое сопротивление

Теплопроводность металлов можно охарактеризовать так – это способность материалов (газ, жидкость и пр.) переносить излишнюю тепловую энергию от разогретых участков тела к холодным. Перенос осуществляется свободно движущимися элементарными частицами, в число которых входят атомы электроны и пр.

Сам процесс теплообмена происходит в любых телах, но способ переноса энергии во многом зависит от агрегатного состояния тела.

Кроме этого теплопроводности можно дать еще одно определение – это количественный параметр возможности тела проводить тепловую энергию. Если сравнивать тепловые и электрические сети, то это понятие аналогично электрической проводимости.

Тепловое сопротивление

Способность физического тела не допускать распространение теплового колебания молекул называют тепловым сопротивлением. Кстати, некоторые, искренне заблуждаются, путая это понятие с теплопроводностью.

Понятие коэффициента теплопроводности

Коэффициентом теплопроводности называют величину, которая равна количеству теплоты, переносимого через единицу поверхности за одну секунду.
Теплопроводность металла была установлена еще в 1863 году.

Именно тогда было доказано то, что за передачу теплоты отвечают свободные электроны, которых в металле великое множество.

Именно поэтому коэффициент теплопроводности металлов значительно выше, чем у диэлектрических материалов.

Теплопроводность – это физическая величина и по большей части зависит от параметров температуры, давления и типа вещества. Большая часть коэффициентов определяется опытным путем. Для этого разработано множество методов.

Результаты сводятся в справочные таблицы, которые потом используются при проведении различных научных и инженерных расчетов.
Тела обладают разной температурой и при тепловом обмене она (температура) будет распределяться неравномерно.

Другими словами необходимо знать, как зависит коэффициент теплопроводности от температуры.

Многочисленные опыты показывают то, что у многих материалов связь между коэффициентом  и самой теплопроводностью является линейной.

Коэффициент теплопроводности

Теплопроводность металлов обусловлена формой его кристаллической решетки.

Во многом коэффициент теплопроводности зависит от строения материала, размеров его пор и влажности.

Параметры теплопроводности в обязательном порядке учитывают во время выбора материалов для ограждающих конструкций – стен, перекрытий  и пр.

В помещениях, где стены выполнены из материалов с высокой теплопроводностью в холодное время года будет довольно прохладно. Не поможет и отделка помещения.

Для того, чтобы этого избежать стены необходимо делать довольно толстыми. Это непременно повлечет повышение затрат на материалы и оплату труда.

Схема утепления деревянного дома

Именно поэтому в конструкции стен предусмотрено использование материалов с низкой теплопроводностью (минеральная вата, пенопласт и пр.).

  • В справочных материалах по теплопроводности различных материалов особое место занимают данные, представленные о сталях разных марок.Так, в справочных материалах собраны экспериментальные и расчетные данные следующих типов стальных сплавов:

    стойких к воздействию коррозии, повышенной температуры;

  • предназначенных для производства пружин, режущего инструмента;
  • насыщенных легирующими добавками.

В таблицах сведены показатели, которые были собраны для сталей в температурном диапазоне от -263 до 1200 градусов.
Усредненные показатели составляют для:

  • углеродистых сталей 50 – 90 Вт/(м×град);
  • коррозионностойких, жаро- и теплостойких сплавов, относящимся к мартенситным — от 30 до 45 Вт/(м×град);
  • сплавов, относящимся к аустенитным от 12 до 22 Вт/(м×град).

В этих справочных материалах размещена информация и свойствах чугунов.

Коэффициенты теплопроводности алюминиевых, медных и никелевых сплавов

Во время проведения расчетов связанных с цветными металлами и сплавами проектировщики применяют справочные материалы, размещенные в специальных таблицах.

Таблица теплопроводности алюминиевых сплавов

В них представлены материалы о теплопроводности цветных металлов и сплавов, кроме этих данных указана информация о химическом составе сплавов. Исследования проводили при температурах от 0 до 600 °С.

По информации собранной в этих табличных материалах видно то, что к цветным металлам, обладающим высокой теплопроводностью сплавы на основе магния и никель. К металлам, у которых низкая теплопроводность относят нихром, инвар и некоторые другие.

У большинства металлов хорошая теплопроводность, у одних она больше, у других меньше. К металлам с хорошей теплопроводностью относят золото, медь и некоторые другие. К материалам с низкой теплопроводностью относят олово, алюминий и пр.

Таблица теплопроводности сплавов никеля

Высокая теплопроводность может быть и достоинством, и недостатком. Все зависит от сферы применения. К, примеру, высокая теплопроводность хороша для кухонной посуды. Материалы с низкой теплопроводностью применяют для создания неразъемных соединений металлических деталей. Существуют целые семейства сплавов, выполненных на основе олова.

Можно ли повысить теплопроводность меди

Не так давно, группа западных ученых провела ряд исследований по повышению теплопроводности меди и ее сплавов. Для работы они применяли пленки, выполненные из меди, с  нанесенным на ее поверхность тонким слоем графена. Для его нанесения использовали технологию его осаждения из газа.

При проведении исследований применялось множество приборов, которые были призваны подтвердить объективность полученных результатов.
Результаты исследований показали то, что графен обладает одним из самых высоких показателей теплопроводности. После того, как его нанесли на медную подложку, теплопроводность несколько упала.

Но, при проведении этого процесса происходит нагревание меди и в ней происходит увеличение зерен, и в результате повышается проходимость электронов.

Графен с медной фольгой

При нагревании меди, но без нанесения этого материала, зерна сохранили свой размер.
Одно из назначений меди это отведение лишнего тепла из электронных и электрических схем. Использование графенового напыления эта задача будет решаться значительно эффективнее.

Влияние концентрации углерода

Стали с малым содержанием углерода обладают высокими показателями теплопроводности. Именно поэтому материалы этого класса применяют для изготовления труб и арматуры для нее. Теплопроводность сталей этого типа лежит в диапазоне 47-54 Вт/(м× К).

Применение теплопроводности при строительстве

У каждого материала имеется свой показатель теплопроводности. Чем ее значение ниже, тем, соответственно ниже уровень теплообмена между внешней и внутренней средой. Это означает то, что в здании, сооруженном из материала с низкой теплопроводностью, зимой будет тепло, а летом прохладно.

Тепловые потери по швам панельного дома

При сооружении различных зданий, в том числе и жилые здания, без знаний о теплопроводности стройматериалов не обойтись. При проектировании строительных сооружений необходимо учитывать данные о свойствах таких материалов как – бетон, стекло, минеральная вата и многих других. Среди них предельная теплопроводность принадлежит бетону, между тем, у древесины она в 6 раз меньше.

Системы отопления

Ключевая задача любой отопительной системы – это перенос тепловой энергии от теплоносителя в помещения. Для такого обогрева применяют батареи или радиаторы отопления. Они необходимы для передачи тепловой энергии в помещения.

  • Радиатор отопления – это конструкция внутри, которой перемещается теплоноситель. К основным характеристикам этого изделия относят:
    материал, из которого оно изготовлено;
  • вид конструкции;
  • размеры, в том числе и количество секций;
  • показатели теплоотдачи.

Именно теплоотдача и есть ключевой параметр. Все дело в том, что определяет объем энергии, которое передается от радиатора в помещение. Чем больше этот показатель, тем ниже будут потери тепла.

Существуют справочные таблицы, определяющие материалы, оптимальные для использования в отопительных системах. Из данных, которые в них размещены, становится ясно, что самым эффективным материалом считается медь.

Но, вследствие ее высокой цены и определенных технологических сложностей, связанных с обработкой меди их применяемость не так высока.

Биметаллический радиатор

Именно поэтому все чаще применяют модели, изготовленные из стальных или алюминиевых сплавов. Нередко применяют и сочетание различных материалов, например, стали и алюминия.

Каждый изготовитель радиаторов, при маркировке готовых изделий должен указывать такую характеристику, как мощность тепловой отдачи.

На рынке отопительных систем можно приобрести радиаторы, изготовленные из чугуна, стали, алюминия и биметалла.

Методы изучения параметров теплопроводности

При проведении изучения параметров теплопроводности надо помнить о том, что характеристики конкретного металла или его сплавов от метода его выработки.

Например, параметры металла полученного с помощью литья могут существенно отличаться от характеристик материала изготовленного по методам порошковой металлургии.

Свойства сырого металла коренным образом отличаются от того, который прошел через термическую обработку.

Термическая нестабильность, то есть преобразование отдельных свойств металла после воздействия высоких температур является общим для практически всех материалов. Как пример можно привести то, что металлы после длительного воздействия разных температур способны достичь разных уровней рекристаллизации, а это отражается на параметрах теплопроводности.

Структура стали после термической обработки

Можно сказать следующее – при проведении исследований параметров теплопроводности необходимо использовать образцы металлов и их сплавов в стандартном и определенном технологическом состоянии, например, после термической обработки.

Например, существуют требования по измельчению металла для проведения его исследований с применением способов термического анализа. Действительно, такое требование существует при проведении ряда исследований. Бывает и такое требование – как изготовление специальных пластин и многие другие.

Нетермостабильность металлов ставит ряд ограничений использование теплофизических способов исследования. Дело в том, что этот способ проведения исследований требует нагревать образцы не менее двух раз, в определенном температурном интервале.

Один из методов называют релакционно-динамическим. Он предназначен для выполнения массовых измерений теплоемкости у металлов. В этом методе фиксируется переходная кривая температуры образца между его двумя стационарными состояниями. Этот процесс является следствием скачка тепловой мощности вводимой в испытуемый образец.

Такой метод можно назвать относительным. В нем используются испытуемый и сравнительный образцы.  Главное заключается в том, что бы у образцов была одинаковая излучающая поверхность.

  При проведении исследований температура, воздействующая на образцы должна изменяться ступенчато, при этом по достижении заданных параметров необходимо выдержать определенное количество времени.

  Направление  изменения температуры и ее шаг должен быть подобран таким образом, что бы образец, предназначенный для испытаний, прогревался равномерно.

В эти моменты тепловые потоки сравняются  и отношение теплопередачи будет определяться как разность скоростей колебаний температуры.Иногда в процессе этих исследований источник косвенного подогрева исследуемого и сравнительного образца.

На один из образцов могут быть созданы дополнительные тепловые нагрузки в сравнении со вторым образцом.

Какой метод измерения теплопроводности лучше всего подходит для вашего материала?

Существуют методы измерения тепловодности, такие как LFA, GHP, HFM и TCT. Они отличаются друг от друга размерами и геометрическими параметрами образцов, применяемых для проверки теплопроводности металлов.

Эти сокращения можно расшифровать как:

  • GHP (метод горячей охранной зоны);
  • HFM (метод теплового потока);
  • TCT (метод горячей проволоки).

Вышеуказанные способы применяют для определения коэффициентов различных металлов и их сплавов. Вместе с тем с использованием этих методов, занимаются исследованием других материалов, например, минералокерамики или огнеупорных материалов.

Образцы металлов, на которых проводят исследования, имеют габаритные размеры 12,7×12,7×2.

, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник: https://stankiexpert.ru/spravochnik/materialovedenie/teploprovodnost-metallov.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.